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We give a characterization of equilibrium payoffs of a repeated game in which players use the 
long-run average of the one-shot-game payoffs as the overall payoff of the repeated game and 
individual actions are not discernible by others. In contrast to the ‘Anti-Folk Theorem’ 
equilibria may exist even though the one-shot game has no equilibrium. 

1. Introduction 

The aim of this paper is to characterize the set of equilibrium payoffs of a 
repeated game having two important features. First, the game that is 
repeated over time has a large number of individually insignificant players 
(i.e. a continuum of them), and the knowledge that each player has at any 
point in time about the history of the game does not possess individualistic 
information about the others, so that it is invariant with respect to the 
behavior of small subsets of players (zero measure). Therefore, in this 
context, players cannot identify and punish individual deviators from the 
long-run plan. Second, players use the long-run average of the one-shot-game 
payoffs as the overall payoff of the repeated game. Therefore, in order to 
carry out a successful deviation, a player has to be able to improve his payoff 
at least an infinite number of times. 

What has been known as the ‘Folk Theorem’ is the equilibrium-payoff 
characterization of infinitely-repeated games without the first feature; i.e., at 
any point in time the full history of the game is common knowledge. The 
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Folk Theorem says that a payoff is a Nash equilibrium of the infinitely 
repeated game if and only if it is feasible and individually rational in the one- 
shot game [see Aumann (1981)]. Results about repeated games having the 
first feature (individual deviators cannot be identified) but using the discount- 
ing criterion are collectively termed the ‘Anti-Folk Theorem’ [see Green 
(1980), Kaneko (1983) and Dubey and Kaneko (1984)] which states that a 
payoff is a Nash equilibrium of the repeated game if and only if it is a 
discounted sum of one-shot Nash-equilibrium payoffs. 

Mass6 and Rosenthal (1989) characterized the Nash-equilibrium strategies 
of repeated games with the same features that we are concerned with. 
However, their characterization only applies to repetitions of games with 
continuous payoffs and sequentially-compact’ aggregate action sets. Under 
their assumptions a strategy is a Nash equilibrium of the infinitely repeated 
game if and only if every converging subsequence of aggregate actions 
generated by the strategy is either ‘negligible’ or has a one-shot Nash 
equilibrium as a limit point. The payoff characterization here will apply to a 
much larger class of games; in fact we have only to assume that the payoff 
functions are uniformly bounded. 

The main difficulty in characterizing the set of equilibrium payoffs of 
infinitely-repeated nonatomic games with long-run-average criterion is that, 
roughly, without these continuity and compactness assumptions there may be 
subsequences of payoffs in the one-shot game with no cluster points or with 
a discontinuity in the limit; and therefore, payoffs that are not even feasible 
in the one-shot game may emerge as equilibria in the repeated game because 
they can be achieved through repetition. We overcome this difficulty by 
defining an artificial concept, s-almost-equilibrium payoff (the measure of 
players that can improve their corresponding payoff by more than E is itself 
smaller than E) in the one-shot game, and as E goes to zero, preserving the 
‘limit’ payoff as a feasible one for the repeated game. Therefore, our 
characterization says that the set of undiscounted equilibrium payoffs of the 
repeated game is, roughly, the convex hull of ‘limits’, when E goes to zero, of 
sequences of s-almost equilibrium payoffs of the one-shot game. 

In a broad class of economic applications one would think that a more 
appropriate model would be either the finitely-repeated game or the dis- 
counted game. However, for the particular information structure in which we 
are interested, equilibria of the finitely-repeated game or infinitely-repeated 
game with discounting may not exist if the one-shot game does not possess 
equilibria; with the infinite undiscounted model, however, this is not the case. 
In addition, models of infinitely-repeated games with long-run-average payoff 
criterion can generate insights about far-sighted players that are not obtain- 
able from the other models. 

‘Every sequence has a convergent subsequence. 
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At this point, two remarks are in order. First, in order to define the 
infinitely-repeated game with long-run-average payoff criterion, it is necessary 
to associate a real number to every sequence of average payoffs. Standard 
ways of doing so are to use either the liminf or a Banach limit. Here, we use 
the concept of limit medial, introduced by Meyer (1973), because, besides 
being linear, it has the convenient property that the order of ‘limit’ and 
integration may be interchanged. Second, our characterization is not exact in 
the sense that we do not obtain an ‘if and only if’ result. However, as we will 
show, necessary and sufficient conditions differ only on non-converging 
sequences. 

The next section of the paper is devoted to describing the game and to 
presenting the definitions needed to state the results, in turn presented in 
section 3. In an appendix at the end of the paper, the reader will find the 
proofs of certain lemmas. 

2. The game 

Let (I, S, A) be a measure space, where I= [0, l] 
the g-algebra of Lebesgue measurable subsets of 
measure on (I, S). 

is the set of players, S is 
I, and A is the Lebesgue 

In the one-shot (stage) game denoted by G, Ai denotes the set of feasible 
actions for each i E I. The elements aiE Ai may be interpreted as either pure 
or randomized; we do not allow for additional randomizations over the 
elements of Ai. Assume that some a-algebra is associated with Uio,Ai, and 
denote by 2 the set of feasible joint actions, defined by 

a(i) EA~V~EZ, and d is measurable .* 

For ti,6~2 we say that 6 and 6 are equivalent if they differ only on a set of 
zero measure. Denote by A the set of equivalence classes of 2’. For each i E I, 
the payoff function is hi: Ai x A-R. We assume that (hi)i,r is a collection of 
uniformly-bounded functions such that for every aE A the function hi(a(i),a) 
is measurable as a function of i. We adopt the usual convention that if a 
statement holds for all elements of an equivalence class, then we say that it 
holds for the class itself; in particular, h,(a(i),a) measurable means that for all 
6 in the class a, hi(iz(i),a) is measurable. Hence, there exists YE R, such that 

‘In defining a feasible joint action as a measurable function, one is really talking of a sort of 
generalized game. If each player is choosing an action from his action set independently of 
others, there is no a priori reason to expect joint measurability. In the absence of the 
measurability assumption, however, it would not be possible to use the concept of limit medial, 
crucial here. 
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for every a~ A, A({i~ZlIhJa(i),a)I 2 y})= 1 and therefore, given UEA, hi(a(i),a) 
is an element of L,([O, 11) as a function of i. Let 

be the set of feasible payoffs of G. 
A Nash equilibrium of G is an a E A such that 

,I({iEll h,(a(i), a) 2 hi(bi, U) Vbie A,})= 1. 

Let A* denote the set of Nash equilibria of the stage game. Schmeidler (1973) 
showed that A* may be empty. 

For every E > 0, define a E A as an e-a/most-equilibrium of G if 

SUP hi(bi,a)>hi(a(i),U)+E SE. 

bieAi 

(Note the appearance of E in two places in the line above.) 
Let E,={~EAI a is an s-almost-equilibrium of G}. It is straightforward to 

see that A* c E, YE > 0. Denote by V, the set of e-almost-equilibrium payoffs of 
G defined by 

Ve={w~V13a~E, such that l({iEIIhi(a(i),a)=w(i)})=l}. 

Example 3 (at the end of the paper) shows that in general V, may be empty 
for sufficiently small E. Therefore, in the sequel the reader should be aware of 
the fact that the sets defined from V, may also be empty. 

Consider the convex hull of V, defined by 

COP’,= w~L,13m,(c’,..., c”‘)~Rm+ and (II’,..., u”‘) such that: 
i 

v’EVzVj=l,..., m, i cj= 1, and w= 2 cjvj . 

j=l j=l 

Now, define the closure of COV, by 

w~L,13{m,,m, ,... },{(c,! ,..., c~)}~=, and 
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{(v,‘, . *. , v,m,)>;= 1 s.t. vn _2 1: (c.‘, . . . ) c?) E RT:“; 

1 s’jjm,; and w= lim F c’,u’, , 

ndm j=l 

where the limit operation is taken with respect to the L, (CO, 11) topology 
(a.e.-uniform convergence).3 

In the (undiscounted) repeated game G”, time is indexed by t taking 
values in N, the set of natural numbers. For each t E N, the history of play 
through t is described by A’, the t-fold Cartesian product of A with itself, 
with typical element (a’, . . . , a’). A strategy for player i is a sequence of 
functions fi = f!, ff, . , .) satisfying 

(i) f! EAT; 

and Vt E N, 

(ii) ff+i:A’+&. 

The fact that players can make contingent plans only as a function of those 
aspects of the history described by equivalence classes is the informational 
restriction which insures that individual deviators cannot be detected. Let Fi 
denote the set of fi satisfying (i) and (ii), and let 

F={(fi)i.rIfi~FiVi~I; j! . 1s measurable as a function of i; and Vt 2 1 
and V(a’ )...) U’)EA’, f:“(a’)...) a’) is measurable as a function 
of i>. 

Thus, Fi is the set of i’s feasible strategies, and F is the set of joint strategies 
in G”. Given f E F, the play it produces is identified as follows: Let a’(f) EA 
be such that for a.e. iel u’(f)(i) = f ,! and, recursively, let u’+‘(f) E A be such 
that u’+‘(f)(i)=f:+‘(u’(f),..., a’( f )) for a.e. i E I. For player i E I, let 

hT(f I=+ i h(fX”‘W,~~~ > a’- ‘(f )), uf(f)). 
f-l 

To define payoffs generally in undiscounted repeated games, one must choose 
some function between the extremes liminf,,, hr( f) and limsup,, o. h,T( f ). 
For our purposes the natural choice is the concept of limit medial introduced 
by Meyer (1973). A limit medial is a linear functional H on d, (the set of all 
bounded sequences of real numbers) with the following properties: 

(i) If XEL, then liminf,,, x’~H(x)~limsup,,, x’ 

30ne may alternatively define co V, simply as the &-norm closure of co V,. 
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(ii) If {I+}~~ is any uniformly-bounded sequence of measurable (real-valued) 
functions on I, then VJ ES 

~H({v’(i)},“=,)dA(i)=H 
J 

Existence and measurability of such functionals follow from Theorem 2 in 
Meyer (1973).4 Now, associate with each foF the sequence (h:(f)},“=, ~8~; 
pick a limit medial Zf on /,; and define the payoff function Hi(f) to be the 
limit medial evaluated at the sequence {h:(f),“=,. Notice that every player 
uses the same criterion to associate real numbers to sequences of payoff 
averages and that ‘ilf~ F, Hi(f) is measurable as a function of i. Let 
V/” c L, be the set of feasible payoffs of G”, i.e. 

V”={WEL,I~~EF such that for a.e. ill w(i)=Hi(f)>. 

Given f~ F and gie Fi, let (f 1 gi) E F denote the joint strategy f with 
player i switching to gi, defined by 

i 

gi if i=j 
(fIgi)j= fj if i+j’ 

A Nash equilibrium strategy of G” is an f E F such that 

Let F* denote the set of Nash equilibria of G”. Define WE V” to be a Nash 
equilibrium payoff of G” if there exists f~ F* s.t. A({i E II w(i) =HJf)}) = 1. 
Let I/“* c I/” denote the set of Nash equilibrium payoffs of G”. 

For every E > 0 define 

HVe= WEP~~{U~)~~ s.t. u’~V~Vt~l and 

a.e.itZ:H(jf irt!(i)u=w(i)}; 

4While the existence of Banach limits follows from the Hahn-Banach Theorem assuming the 
axiom of choice, existence of limit medial follows from a more general result (Meyer’s Theorem 
1) which assumes the continuum hypothesis. (We are indebted to J.F. Mertens for pointing out 
to us that the limit medial of a sequence of averages is a Banach limit of the initial sequence.) 
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that is, the set of payoffs of G” that are also the long-run average of a 
sequence of &-almost-equilibrium payoffs of G. It is an easy verification to see 
that Ve>O COV, c Zf1/,. 

Using the general structure of the strategy space of G” we can also define 
the finitely-repeated game GT and the discounted infinitely-repeated game GB, 
respectively (as well as their respective equilibrium strategies), where T is the 
number of times that G is repeated and BE(O, 1) is the discount factor. Given 
a strategy f E F the payoff for player ie I in GT and GB are defined, 
respectively, as 

H:(f) E h:(f) and H!(f) - (1 -B) f P’- ‘hi(af(f) (i), a’(f)). 
f=l 

3. Results 

Before stating and proving the main results about I/“’ we give the well 
known characterization of the equilibrium strategies of GT and GB (the 
‘Anti-Folk’ Theorem in strategy space) in the form of Proposition 1 below.’ 
The idea behind it is simple: if the payoff criterion of the repeated game has 
the property that increasing the payoff in any stage game raises the overall 
payoff, then, because of the fact that individual actions are not discernible by 
the others, only sequences of one-shot equilibria are possible in an equili- 
brium of the repeated game. 

Proposition 1. f E F is a Nash equilibrium of GB (resp. GT) if and only if 
Vt 2 1 (resp. t 5 T)a’(f) E A*. 

Now, we will first show that V”* (th e set of equilibrium payoffs of Cm) 
coincides with the set of those feasible payoffs of G” having the property 
that for every E > 0 and for a.e. i E I the ‘proportion of times’ that player i can 
improve his payoff by more than E is itself smaller than E. 

Formally, let (u’}g 1 be a sequence in V; i.e., Vt 2 1 3~’ EA s.t. for a.e. iEZ 
u’(i) = h,(a’(i), a’). Let {2>tZ1 be an particular sequence of functions where 
Vt 2 1, ii’ belongs to the equivalence class a’. For every E >O and for every 
t 2 1 define 

sup hi(bi,a’)-hi(2(i),a’)>.z . 
bisAi 

5For the proof of the discounting case, see Green (1980); the proof of the finitely-repeated case 
is analogous. 
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Notice that if A,(ZE) SE then U’E V,. Now, Vial define @= {tz 1 liar:} as the 
subset of N in which player i has a one-shot deviation that gives him more 
than E. For every Tzl let &T)=fiLn{l,...,T) and let #g(T) be its 
cardinality. Given Tz 1, #BE(T) is measurable as a function of i (it may be 
also expressed as a sum of characteristic functions, i.e., Viol # &( T) = 
c:=i j&i)). Th ere ore, as previously, let #BE(T) denote its equivalence class. f 

Condder the following subset of I/“: 

Y”= v~V”13{u’}~~s.t.o’~I/Vt~l and for a.e.iEZ, 

I{$ #&n)T_i)js}. H 
( 

Proposition 2. 

= u(i) and Va > 0, H ( 

Proof. (1) V”* c Y”. Let UE V”‘; this means that 3f~ F* s.t. for a.e. is I, 
H({hT(f))) = u(i). Next, Vt 2 1 define u’ E V by v’(i) = hi(U*(f) (i), a’(f)) a.e. i E 1. 
We have to show that Vs>O, H({(l/T) #B:(T)}) SE a.e. iel. Suppose not, 
3.s>Os.t. 33~s with positive measure s.t.a.e. ~EJ, H({(l/T) #B:(T)))>&. In 
order to contradict the fact that f is an equilibrium strategy of G”, we will 
show that a.e. ~EJ has available another strategy that yields him a higher 
payoff. For every i E .Z define g, E Fi as follows: 

a’(f)(i) if t$BE 
&TX.)= bc 

i. 
if tEEk’ 

where b: is s.t. h,(b:, a’(f)) -h,(u’“(f)(i), u’(f))>&/2 and Vt 2 1, u’(f) is any 
function belonging to u’(f). For a.e. iEJ, 

Hi(fIgi)-Hi(f)=H({h’(fIgi)>)-H({hT(f)}) 

=H({h?(fIgi)-h?(f))) 

=H 
(i 

f *iI ChikXu’(f Igih * * * 3 a’_ ‘(f Igi)h u’(f Igi)) 

- hi(ufW (9, Cf))l 
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=H zE$Tj [hJb:9 a’(f))- Ma’(f) (99 at(.f))lj) 

ZH f #B:(W)})=H({+ iW:(7J))W) 

> &2/2. 

Hence, 33 ES with positive measure such that a.e. i E J: 3g, E Fi s.t. Hi(f lg,) - 
Hi(f) > 0, contradicting the fact that f E F*. 
(2) Y” c I/“*. Let UE Y”, and let {u’} be s.t. H({(l/T)~T=, u’(i)})= 
u(i) a.e. ie I. This means 3{a’},“,, from A and a corresponding sequence 
{H’},“, 1 with 6’ E a’, Vt 2 1 s.t. u’(i) = hi(a’(i), a’) a.e. i E I, Vt 2 1. Define f E F as 
follows: Vt 2 1 and i E I, f:( .) =2(i). It will be sufficient to show that f E F*. 

Let E> 0 be arbitrary and let gie Fi be any strategy for player i. Then, for 
a.e. i E I 

sup hi(bi, a’(f)) - Ma’(f) (f), a’(f)) biE‘4i 

Since this is true VE > 0, for a.e. i E I, and for arbitrary gi E Fi we conclude that 
~({iEZ(Hi(fIgi)-Hi(f)~O, VgiEFi})=l. Hence feF*. Q.E.D. 

The following example, adapted from one in Schmeidler (1973), illustrates 
what is going to be our next result: a feasible payoff of G”, obtained by a 
sequence of &,-almost-equilibrium payoffs, belongs to I/“* provided that 
{s,},%i goes to zero. Therefore, in contrast with GT and GB, we may have 
games G” in which the equilibrium set of G” is non-empty even when G has 
no equilibria. 

Example 1. In the stage game G, the action set for each in I is Ai = (0, l> 
and the payoff function is 

hi(Ui, U) = i’ ai- f roJ,lUdl if if0 
.I 

0 if i=O 
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As Schmeidler (1973) shows, this game has no equilibria. Consider the 
following strategy combination ~EF in G”. At each t, partition the player 
set into 2’ half-open subintervals of equal size. Almost all players in the odd 
subintervals play 1 while almost all those in the even subintervals play 0, all 
independently of the history. It is easy to see that the sequence of payoffs 
converges a.e. ill to i and that f is an equilibrium of G”; also, Vt 2 1, 

4f) E El,D therefore f generates a sequence of (l/t)-almost-equilibrium 
payoffs. 

Before showing in general that this is a sufficient condition for equilibrium, 
define 

and {s,}g 1 with lim E, = 0 s.t. 
f’rn 

Vtzl, “‘Eve/,,, and w(i)=H({$ iit!(i for a.e.iel}. 

Proposition 3. Z” c V”*. 

Proof. Let UE Z”, and suppose u 4 V”‘. From Proposition 2, this means 
that 3s>O and JES with I(J)=d>Os.t.a.e.i~J, H({(l/T) #B~(T)})~s. 
Therefore, 

limsupS--) #Bt(T)dALH 
T-+m _I (i 

i+ #BE(T)dl 
1) 

# Bi( T) dlz ES. 

It is an easy verification to see that in general VW E V, w E V, and the set 
{~E[O, I]~wE V,} is convex. Since lim,,, sf=O, 3Ts.t.Vt> ;i: v’E Vcaiz; i.e., 

A 
(i I 

iel sup h,(b,,a’)-u’(i)>d/2 s&8/2 
bisAi 

implying that 
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SUP hi(bi,U’)-d(i)>& 5&S/2. 
biGA, 

Now, for every T> T let k = T- ;i We will show by induction on k that 
VT> ‘i; 

When k = 1, since, for a.e. i E J # Bk( i’) 5 T, we have 

Suppose it is true for k, then for k+ 1: 

because, by the induction hypothesis, 

f #B:(T-l)dAsT+ks6/2. 
j 

Therefore, 

~6 I limsup j f # Bi( T) dls limsup 
T + k&d/2 

- 
T-m J k-m ?‘+k 

T 
slimsup Y 

k+,,= T+k 
+ limsup 5% = &/2, 

k-a T+k 

which is a contradiction. Q.E.D. 

Theorem 1. nE,O COV, c V”*. 

Proof. Let UE /Jar0 COV,. By Proposition 3, it will be sufficient to show that 
there exists ~EF~.~.I({~EZ(U(~)=H,(~)})=I and uoZm. By assumption 
UECOV~,,, for every n 2 1. Because of the fact that the set of rational convex 
combinations is a dense subset of the convex hull and therefore of its closure, 
there exist I:, . . . , rF, qn positive integers and of,. . ., vyn in VI,. such that 
17: 1 rj, = qn and for a.e. i E I: 
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,Fl (r’,lq,)v’(i) - 49 12. 
n 

(1) 

Without loss of generality we may assume that 1 Sql < ... <q. < q,,+ 1 < * .-. 

$f qn2q.+1 multiply qn+ 1, d+ 1,. . . , rt; 1 by q,, and redefine them as q,,+ 1, 
mn n+l,...,r,+l. ) For every n 2 1, define sz = 0, and for every 15 j s m,, 

s! =C%= 1 I:. Define the sequence { Tk}Fz ,, as follows: 

T,,=O, 

As vj, E I/l,,, for every n 2 1 and every 1 s j jrn", we may associate to each z$, 
an a’,~As.t.a’,~Er,,. Now, we will construct a strategy for G” using the 
following procedure: For the first block of r: periods, players play according 
to the aggregate action CZ:. For the next r; periods they play according to 

2 a,, . . ., up to the period sy’. This takes care of the first q1 periods. This 
sequence of joint actions will next be repeated q2 times, so that the first qlq2 

periods are taken care of. Similarly, after Tk _ 1 periods, we can carry out the 
above construction for the succeeding qkqk+l periods where: for the next 
block of r-i periods players play according to a:, for the following r: periods 
they play according to a:, . . _, up to the period Tk- 1 + sTk, therefore 
exhausting the first qk periods. After Tk- 1 this sequence of length qk is 
repeated qk+ 1 times. Therefore, we have described the strategy for the first 
Tk = Tk_ 1 + qkqk+ 1 periods. Formally, define f E F as follows: for Tk- 1 < t 5 
Tk, let z( .) = j( ‘) f ak 1 or a.e. icl, where j is such that 

Lemma 1. n({iEIJHi(J)=U(i)l)=l. 

Proof. See appendix. 

Therefore, the strategy 7 generates a sequence of payoffs {~?}taJ=~ where 
u’(i) = hi(af(f) (i), d(f)) a.e. iE1, such that for Tk_ r < ts Tk, U’E I/l/k (Cdl 
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E,= l/k, then lim,, m E, =O). Therefore, v ~2~. Thus, by Proposition 3, 
VE I@. Q.E.D. 

The next example illustrates our next result in which we give a necessary 
condition for equilibrium. 

Example 2. In the stage game G, the action set for each iel is Ai= (0, l} 
and the payoff function is 

1 

1 if ai=l and Jo<1 

hi(Ui, U) = 0 if a,=0 and Ja>O. 

- 1 otherwise 

It is easy to see that A* = 0. Given E >O, consider an aggregate action a in 
which all players play action 1 except a subset of measure less than E. 

Clearly a E E, and hence V,# @. Consider v E V”’ defined by v(i) = 
1 a.e. i E I. A straightforward argument shows that v E HI/, for every E > 0. 

The following theorem shows that this is general; i.e., an equilibrium 
payoff has to belong to HV8 for every s>O. 

Theorem 2. V”’ c ne,,, HVc. 

Proof. Let v be an equilibrium payoff of G”. There exists f e F* such that 
~({i~ZIH,(f)=u(i)})= 1. Let E>O be arbitrary; we have to show that v~HK. 
Consider the sequence {a’(f)>gI of elements 

B={r~$‘(f)$-%) and for every Tz 1 let 
Bn{1,2 ,..., T}. 

Lemmu2. ~EF**H({(~/T) #B(T)},“=,)=O. 

Proof. See appendix. 

of A generated by f. Define 
#B(T) be the cardinality of 

For every t 2 1, define w’(i) = hi(af(f) (i), a’( f )) a.e. i E I. Then for a.e. i E I, 

u(i)=Hdf)=H({+ iI wt(i)i) 

=H 
(r 
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by linearity of H. Now, using again linearity of H, uniform-boundedness of 
payoffs, and Lemma 2, it is easy to see that 

Therefore, 

For every Tzl, define C[T]=(te -BltsT where T is s.t. T= # -B(T)). 

Lemma 3. For a.e. ie I, 

H 
(I _) &yi)})=H({:. &,w’(i)}). 

Proof. See appendix. 

Rewrite mB=(tI,t2,...} and define the sequence {u”}~~, by u”=w’“. Notice 
that Vn 2 1, Y” E V,, since t, E N B implies that w’” E V,. Clearly, for a.e. i E I: 

H({$ jl w))=ff{+ tg4i,)) 

’ =H 
(i - 

+ fE ~f~,wV))) (by Lemma 3) 

= v(i) [by GY. 

Therefore, 3{ z~‘}jZ 1 s.t. Vt 2 1, u’ E V, and for a.e. i E I, 

Hence u E H V,. Q.E.D. 

The following example shows that the set V, may be empty (for sufficiently 
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small E). Therefore, by Theorem 2, it also shows a case in which V”* is 
empty. 

Example 3. In the stage game G, the action set for each ill is Ai= (0, l> 

and the payoff function is 

hi(Oy U) = 
1 if JaL1/2, 

- 1 otherwise, 

hi( 1) U) = 0. 

In order to see that VEE [O, l/2) the set V, is empty, consider an arbitrary 
a E A. Either 1 a >= l/2, in which case 

A((kI\a(i)=l)) 

SUP hi(bi,U)=hi(O,U)=l >&=hi(l,U)+& 
bi6Ai 

or else j a < l/2, in which case 

n({idlu(i)=o)) 

SUP hi(bi,a)=hi(l,a)=O> -1 +E=hi(O,a)+& > l/2>&. 
bieA, 

Hence, the set V, is empty for every E E [O, l/2). 
Before finishing this section, a few comments are in order. 
First, about the characterization itself. It should be noted that Theorems 1 

and 2 do not give us an ‘if and only if’ type of characterization of I’“‘. 
Rather, they say 

n co~e c I/“* c n we. (3) 
&PO &>O 

The sets nBlocoV6 and narO HVe differ, however, only on non-converging 
sequences. To see this, for every E>O define 
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UEvq3( ‘} t v s. .u’~I/,Vtzl and a.e.iEZ limm+ $ v’(i)=v(i) 
f 1 

as the set of payoffs obtained by sequences of s-almost-equilibrium payoffs 
whose limit of averages converges almost everywhere. Obviously HV, c HVE. - - 
It is a straightforward verification to see that HVE c cok’,. Therefore 
na,em c nszOcoI/,. 

Second, about the relationship between the Nash equilibrium payoffs of 
the stage game (V,,) and the items in (3). It is easy to show that V, = nE,,, V,; 
therefore, it follows that coV,,=CO(nE& na,acoT/, and HI/,= 

~(n~>e K) c na>, HVc. Thus, the set of Nash equilibrium payoffs of the 
repeated game, P*, contains elements which do not belong to cove (the 
closed convex hull of the Nash equilibrium of the stage game) because one 
cannot interchange the order of intersection and convex hull, i.e. cocn,Z, 
may be a strict subset of &, a coV,. 

Third, about the use of the limit medial for evaluating non-convergent 
sequences of payoff averages. Some of our results rely strongly on the fact 
that we may interchange the order of integration with the ‘limit’ operation 
[property (ii) of H resembles the Lebesgue Convergence Theorem]. For 
example, in the proof of Lemma 2 this property allows us to show that if for 
a.e. iEZ the ‘proportion of times’ that player i belongs to the set of players 
that can improve their payoff (when a payoff is not an s-almost-equilibrium 
one) by more than E is equal to zero, then the ‘proportion of times’ in which 
the payoffs are not s-almost-equilibria is also equal to zero. It is also 
important to notice that generally the liminf and limsup do not satisfy this 
property; we do not know whether or not Banach limits do in general. 

Appendix 

Lemma 1. A((iEZJH,(J)=v(i)})=l. 

Proof. In order to shorten the notation let h:=hi(af(f) (i), a’(f)). Assume 
TK5T<TK+1 and let 

For a.e. i E I, 



J. Ma&, Undiscounted equilibrium payoffs 259 

by definition of 7. 

The first term of this last expression is equal to 

5 qk+l y rkp(“f(i)-uv(i)) 
k=l p=l 

T rf$(i)-qk”(i) 
p=l 

=jj, [Tk-;-l][;lrfuf(i)-qdu(i)] 
(because Tk = Tk _ 1 +qkqk+l) 

5; 5 (T/c-Tk-1) 
k 1 

Ipzl (2)$(i)--u(i)/ 

K Tk-Tk-l 

+ k P-v eq. (I)1 
k 1 

Tk-kTkP1 (because TK5 T). 

Now, in order to find an upper bound for the second term (l/T) 
notice that 3C, DER s.t.T-TK=CqK+l+D, OsD< 

Therefore this second term is bounded above by 
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1 
T c @f-u(i)) +$ 

I I 
c (hf- v(i)) 

1 G?K,l 1 
<T (K+1)+7 qK+lY 

<I V-T,) 1 
=T (K+l) +cqK+lY 

j&+2 (because TKZqKqK+l). 

Therefore, for a.e. i E I and TK 5 T < TK + 1, 

lim 1 $ h:-o(i) 
T+m Tt=l 

Fix K, and let K>K,>l, then 

1 _ 5 (7”-kT”-‘)+ ;zll (Tk-:-l)+_& ,‘j, (“-:-I) 
TK k=l 
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Therefore, 

But since this is true for every K, 2 1, we conclude that for a.e. ieZ 

o(i) = :Iim $ $ hi = H,(J). Q.E.D. 
t 1 

Lemma 2. ~EF*+H({(~/T) #B(T)})=O. 

Proof. Suppose H( {( l/T) # B(T)}) > 0 

W”(f ))teLi 
and consider a particular sequence 

where for every t EB, a’(f) is a function belonging to the 
equivalence class a’(f). For t E B, define 

I,= SUP hi(bi, U'(f)) > hi(U'^(f) (i), d(f)) + & . 

bisA, 

Since TV B, we know that A(Z,) >a. For every ill, define B’= {t~l?li~Z,). Let 
K be the smallest integer s.t. KEY 1. Define the sequence of measurable 
functions { yk: Z + [w u {o}}~= 1 as follows: 

ZEB 
1jtjT 

#B(T)=K+l 

where x1, is the characteristic function of I,; and for k> 1 

‘k = 1 XI,. 
1 EB 

1sts’T 
#B(T)=k(K+l) 

Define J, = {i EZ[ Yk(i) 1 k + 1). First, we will show that for every k2 1, 
A(J,) > E/(K + 1). In order to do so, notice that 
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sk(K+l)< 1 4ZJ = 
tEB 

1SfST 1qtgT 
#B(T)=k(K+l) #B(T)=k(K+l) 

=s Y,dn= s Y,dl+ j Y,dAs j Y,dl+k, 
I Jk -Jr Jk 

the last inequality because w Jk = {i E II Y,(i) 5 k} and its measure is trivially 
less than or equal to 1. Therefore, 

ek5EkK+Ek-k< s Y,dnsA(J,)k(K+l) 
Jk 

since Y,(i) 5 k(K + 1) Vi E I. Hence A(J,) > E/(K + 1). 
Now, for every T2 1 there exists k2 1 s.t. 

+ (k-l)(K+l)~$ #B(T)<+ k(K+l). 

This implies that 

1 #B(T) 
-k #Bi(T)d+ Yk_,(i)2+ k>- ~- E > 

~ 
T (K+l) K+l’ 

Therefore, for every T2 1, 

1 #B(T)& $ #B’(T)dA>p ~ 
T (K +l)” 

Now for property (ii) of the limit medial 

Since our hypothesis is that H((( l/T) # B(T)}) >O, we conclude that 
JIH({(l/T) #B’(T)}) dA>O, implying that there exists JES with positive 
measure and with the property that for a.e. i E J, H({( l/T) # B’(T)}) > 0. Since 

Y” can be written as 

Y”= uEVm13{uf)~1s.t.u’ET/V’t~1 and for a.e.iEZ, 

H({&il~t(i)}:-J =v(i) and Ve>O, H({i #B:(T)}r=J=O}, 
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by Proposition 2, it would contradict the fact that feF*. Q.E.D. 

Lemma 3. For a.e. i E 1, 

Proof. Since H({(l/T) #B(T)})=0 we have that H({(l/T) # -B(T)})= 1 by 
linearity of H. Therefore, for a.e. i E I, 

w’(i) (*) 

LH 
(i 

$ (T- # -B(T)) 
I> 

(-Y) 

=[ l-fZ({+ # -aT)})](-Y) 

=o. 

Also, 

1 
-(T-#-B(T)) 
T 

y 

=[l-H({‘T #-B(T])]y 

= 0. Q.E.D. 
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